

DEPARTAMENTO DE CIENCIAS FORENSES ORGANISMO DE INVESTIGACION JUDICIAL (OIJ) PODER JUDICIAL, COSTA RICA

PROCEDIMIENTO DE OPERACIÓN NORMADO ESPECIFICO

DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-FID/FID

P-DCF-ECT-TOX-042

VERSIÓN: 01 Rige desde: 12/08/2022 PAGINA: 1 de 54

Elaborado o modificado por:	Revisado por Líder Técnico:
Dr. Marco Martínez Esquivel Perito Judicial 2B Sección Toxicología	Dr. Marco Martínez Esquivel Líder Técnico Unidad de Trámite Rápido
Visto Bueno Encargado de Calidad:	Aprobado por:
Dr. Marco Martínez Esquivel Encargado de Calidad de la Sección de Toxicología	Dr. Diego Arias Alfaro Jefatura, Sección de Toxicología

CONTROL DE CAMBIOS A LA DOCUMENTACIÓN

Versión	Fecha de Aprobación	Fecha de Revisión	Descripción del Cambio	SCD	Solicitado por
01	12/08/2022		Versión Inicial del Procedimiento	013-2022	DAA
		V			
	()				

ESTE PROCEDIMIENTO ES UN DOCUMENTO CONFIDENCIAL PARA USO INTERNO DEL DEPARTAMENTO DE CIENCIAS FORENSES SE PROHÍBE CUALQUIER REPRODUCCIÓN QUE NO SEA PARA ESTE FIN

La versión oficial digital es la que se mantiene en la ubicación que la Unidad de Gestión de Calidad defina. La versión oficial impresa es la que se encuentra en la Unidad de Gestión de Calidad. Cualquier otro documento impreso o digital será considerado como copia no controlada

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 2 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

1 Objetivo:

El objetivo de este PON es establecer un procedimiento para la determinación cualitativa y cuantitativa de otras sustancias volátiles (anestésicos volátiles y otras sustancias volátiles) en muestras de origen biológico en la Sección de Toxicología, del DCF, del O.I.J. de Costa Rica.

2 Alcance:

El alcance de este procedimiento contempla los siguientes dos tipos de casos:

2.1 Este procedimiento es aplicado para la determinación cualitativa y cuantitativa de anestésicos volátiles (halotano, etrano, sevoflurano, isoflurano y desflurano) en muestras de origen biológico (sangre, coágulo y tejido graso) recibidas en la Sección de Toxicología del DCF, en los casos donde se solicite la determinación en general de anestésicos volátiles o específicamente alguno de ellos. La metodología para este tipo de determinación presenta los siguientes parámetros de validación (referencia de la validación: 3.8 y referencias de los criterios de aceptación de la validación: 3.4 y 3.5):

Resumen de resultados de la determinación cuantitativa de sevoflurano en un ámbito de trabajo de 0,0152 g/L a 0,3040 g/L:

	Resultado GC7890		
Parámetro validado	obtenido	esperado	
Límite de detección (g/L)	0,0037	<0,010	
Límite de cuantificación (g/L)	0,012	<0,033	
Linealidad-r	0,9996	>0,99	
Linealidad-F de ANOVA	7152	>(F tabla:6,6)	
Precisión-CV%	<9%	<15%	
%sesgo	<14%	<20%	

Resumen de resultados de la determinación cualitativa de sevoflurano, halotano, etrano, isoflurano y desflurano:

	Resultado GC7890		
Parámetro validado	obtenido	esperado	
Selectividad y especificidad (variaciones de los CV% de lo índices de retención)	<0,3%	<2%	
Precisión-CV% de los índices de retención	<0,2%	<2%	
Límite de detección (g/L)	0,0073	<0,010	

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 3 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

2.2 Este procedimiento es aplicado para la determinación cualitativa de sustancias volátiles (acetaldehido, metanol, éter, etanol, hexano, acetona, isopropanol, diclorometano, acetonitrilo, n-propanol, etilacetato, ciclohexano, isooctano, heptano, metil-etil-cetona, cloroformo, 1-butanol, tolueno y xilenos) y la determinación cuantitativa de tolueno en muestras de origen biológico (sangre, coágulo y orina) recibidas en la Sección de Toxicología del DCF, en los casos donde se solicite la determinación de sustancias volátiles en general o específicamente alguna de ellas. La metodología para este tipo de determinación presenta los siguientes parámetros de validación (referencia de la validación: 3.9 y referencias de los criterios de aceptación de la validación: 3.4 y 3.5):

Resumen de resultados de la determinación cuantitativa de tolueno en un ámbito de trabajo de 0,001078 g/L a 0,0802 g/L:

Parámetro validado	Resultado GC7890		
r drametre vandade	obtenido	esperado	
Límite de detección (g/L)	0,00012	<0,00033	
Límite de cuantificación (g/L)	0,00041	<0,001	
Linealidad-r	0,999	>0,99	
Linealidad-F de ANOVA	2412,9	> (F tabla:6,6)	
Precisión-CV%	<6%	<15%	
Veracidad-%sesgo	<10%	<20%	

Resumen de resultados de la determinación cualitativa de acetaldehido, metanol, eter, etanol, hexano, acetona, isopropanol, diclorometano, acetonitrilo, n-propanol, etilacetato, ciclohexano, isooctano, heptano, metil-etil-cetona, cloroformo, 1-butanol, tolueno y xilenos:

	Resultado GC7890		
Parámetro validado	obtenido	esperado	
Selectividad y especificidad (variaciones % de los CV% de los índices de retención)	<0,3%	<2%	
Precisión-CV% de los índices de retención	<0,4%	<2%	
Límite de detección de tolueno y xilenos (g/L)	0,001	<0,003	
Límite de detección de los otros volátiles (g/L)	0,01	<0,03	

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 4 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

3 Referencias:

- **3.1** Burrows, D., Nicolaides, A., Stephens, G., and Ferslew, K.. Sevoflurane Analysis in Serum by Headspace Gas Chromatography with Application to Various Biological Matrices. Journal of Analytical Toxicology, 2004, 28: 418-421.
- **3.2** Kovatsi, L., Giannakis, D., Arzoglou, V. and Samanidou, V. Development and validation of a direct headspace GC-FID method for the determination of sevoflurane, desflurane and other volatile compounds of forensic interest in biological fluids: Application on clinical and postmortem samples. J. Sep. Science, 2011, 34: 1004–1010.
- **3.3** Martínez, M.A. Criterios cualitativos en toxicología forense. Rev Esp Med Legal. 2012; 38(2): 68-75.
- **3.4** Martínez, M.A. Criterios cuantitativos en toxicología forense. Rev Esp Med Legal. 2014; 40(1): 30-38.
- **3.5** Miller, James N. y Miller, Jane C. Estadística y Quimiometría para Química Analítica. 4Ta Ed., Prentice-Hall con sello autorizado de Pearson Educación, S.A., Impreso en España, 1994.
- **3.6** Spiridonov, V.P. Tratamiento matemático de datos físico-químicos. Editorial MIR. Moscu. 1973.
- **3.7** Standard Practices for Method Validation in Forensic Toxicology, SWGTOX Doc 003, revisión 1, published May 20, 2013.
- **3.8** Validación y estimación de incertidumbre de la determinación cuantitativa de sevoflurano o cualitativa de sevoflurano, halotano, etrano, isoflurano y desflurano en muestras de sangre por HS-GC-FID/FID con el equipo HS-GC7890-FID/FID. Informes 001-TOX-VAL-(1)-2014 y 001-TOX-INC-(1)-2014.
- **3.9** Validación y estimación de incertidumbre de la determinación cuantitativa de tolueno o cualitativa de acetaldehido, metanol, eter, etanol, hexano, acetona, isopropanol, diclorometano, acetonitrilo, n-propanol, etilacetato, ciclohexano, isooctano, heptano, metiletil-cetona, cloroformo, 1-butanol, tolueno y xilenos en muestras de sangre por HS-GC-FID/FID con el equipo HS-GC7890-FID/FID. Informes 002-TOX-VAL-(1)-2014 y 002-TOX-INC-(1)-2014.

4 Equipos y Materiales:

- -Agitador de tubos de ensayo por inversión (rotatorio).
- -Balanza analítica, rango 0 a 200 g o similar, precisión +/- 0,0001 g o similar.
- -Balón aforado de 10 mL, 25 mL, 50 mL, 100 mL y 1000 mL, o similar.
- -Base de datos "Manejo de solicitudes y RAS", versión actualizada, elaborada por el Dr. Marco Antonio Martínez Esquivel. (ver anexo 03).
- -Botellas de plástico con tapa de rosca de 125 mL, 250 mL, 500 mL o similar.
- -Bitácora de Control y uso de Equipo: "Cromatógrafo de gases con doble columna y doble detector FID. Marca: Agilent. Modelo: GC-7890/HSS-7697A".
- -Bitácora de Control y uso de Equipo: "Cromatógrafo de gases con doble columna y doble detector FID. Marca: Agilent. Modelo: GC-8890/HSS-7697A".
- -Cabina de Bioseguridad Clase 2-B2.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 5 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

- -Cámara de Bioseguridad tipo I.
- -Capilla de extracción.
- -Congelador (≤0°C).
- -Cromatógrafo de gases Agilent 7890, con automuestreador Head-space Agilent 7697A, con doble columna (DB-ALC1 y DB-ALC2) y doble detector FID, o similar.
- -Descapsulador para viales de espacio de cabeza de 20 mm.
- -Dilutor Microlab 500 o 600 Series Hamilton, con jeringas de dilución y con jeringas de muestreo con rango de 10 uL a 50000 uL, exactitud < a +/- 3,0%, o similar.
- -Formulario "Cuantificación y estimación de la incertidumbre (reporte muestras otros volátiles)"
- -Formulario "Cuantificación y reporte de controles (otros volátiles)"
- -Horno de laboratorio, rango 20-240º C (± 10º C).
- -Gabacha.
- -Gradillas para tubos.
- -Guantes desechables.
- -Hoja de cálculo "Machote curva de calibración de otros volátiles", versión actualizada, elaborada por el Dr. Marco Antonio Martínez Esquivel. (ver anexo 5).
- -Lavadora automática de cristalería.
- -Lentes de seguridad.
- -Papel Kraft.
- -Pinzas de disección con diente de ratón.
- -Pipetas plásticas de transferencia de 5 mL o similar, nuevas.
- -Pizeta.
- -Recipiente plástico para desechos punzo-cortantes, de 1 L o similar.
- -Recipiente plástico para lavado de septum de 2,5 L o similar.
- -Refrigerador (0 a 10°C).
- -Sellador para viales de espacio de cabeza de 20 mm.
- -Sellos de aluminio para viales de espacio de cabeza de 20 mm, nuevos.
- -Septum de Teflon/Silicone con Liner-10/90 para sellos de aluminio de 20 mm.
- -Tijeras para disección.
- -Tinas plásticas de 20 L, 30 L o similar.
- -Toallas de papel desechable.
- -Viales de espacio de cabeza de 20 mm x 75 mm, o similar.
- -Pipetas de vidrio de 1 mL y 2 mL, o similar.
- -Probetas de 25 mL, 50 mL, 100 mL, 500 mL, 1000 mL y 2000 mL, o similar.

P-DCF-GCG-JEF-001-R3, Versión 01 Emitido y Aprobado por Unidad de Gestión de Calidad

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 6 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

Nota 1:

Los viales de espacio de cabeza que tienen contacto directo con fluidos o tejidos biológicos se colocan en una tina con disolución de cloro para lavado de aproximadamente 0,5% a 1% por mínimo 4 horas, luego se lavan con jabón alcalino, se enjuagan con agua de grifo y se hornean a 140° C por lo menos por dos horas. Los viales de espacio de cabeza que no tienen contacto directo con fluidos o tejidos biológicos se enjuagan con agua de grifo y se hornean a 140° C por lo menos por dos horas.

Las pipetas y los balones se lavan con jabón alcalino, se enjuagan con agua de grifo y se enjuagan tres veces con agua desionizada. Esta cristalería no se hornea, debe colocarse invertida para que escurra y esperar a que esté seca.

Los beakers y probetas se lavan con jabón alcalino, se enjuagan con agua de grifo, se enjuagan tres veces con agua desionizada. Esta cristalería puede ser horneada a 140° C por lo menos por dos horas o puede colocarse invertida para que escurra y esperar a que esté seca.

Descarte la cristalería quebrada en un recipiente plástico para desechos punzo-cortantes.

Los materiales que están en contacto directo con fluidos o tejidos biológicos como las pinzas de disección con diente de ratón, los Septum de Teflon/Silicone con Liner-10/90 para sellos de aluminio de 20 mm, las tijeras para disección y las gradillas para tubos se colocan en una tina o en el recipiente plástico para lavado de septum de 2,5 L con disolución de cloro para lavado de aproximadamente 0,5% a 1% por mínimo 4 horas, luego se lavan con jabón alcalino, se enjuagan con agua de grifo y agua desionizada. Este material no se hornea, deben dejarse sobre toallas de papel para que escurran y esperar a que estén secos.

Las botellas de plástico con tapa de rosca y el garrafón de plástico con llave de dispensado, se enjuagan con agua de grifo y se enjuagan tres veces con agua desionizada. Este material no se hornea, deben colocarse invertidos para que escurran y esperar a que estén secos.

El sellador y el descapsulador se limpian con papel toalla impregnado de disolución de cloro al 0,5%.

5 Reactivos y Materiales de Referencia:

- -Agua desionizada.
- -Dimetilsulfoxido (DMSO), calidad reactivo o similar.
- -1,4-Dioxano calidad reactivo o similar.
- -Disolución de 1,4-Dioxano 1,03 g/L (Estándar interno, Ver Anexo Número 1).
- -Disolución de cloro al 0,5% (Ver Anexo Número 1).
- -Disolución de cloro concentrada al 10%, 12% o similar, se adquiere comercialmente.
- -Disolución de cloro para desinfección de aproximadamente 0,5% a 1% (Ver Anexo Número 1).
- -Disoluciones de un analito volátil o mezclas de analitos volátiles de diferentes concentraciones (madre, intermedia o trabajo), utilizadas en la preparación de disoluciones de controles y calibradores, preparadas a partir de Material de referencia (Ver Anexo Número 1).
- -Gas ultrapuro (hidrógeno, helio y aire).
- -Jabón alcalino.
- -Material de referencia de Etrano, Halotano, Sevoflurano, Isoflurano y Desflurano; calidad estándar analítico USP o similar.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 7 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

- -Material de referencia de Etrano, Halotano, Sevoflurano, Isoflurano y Desflurano; calidad estándar de referencia Ph. Eur. o similar.
- -Material de referencia de los diferentes analitos volátiles, con pureza de 99%GC o mayor, calidad reactivo o similar (Acetaldehído, Acetona, Acetonitrilo, 1-butanol, Ciclohexano, Cloroformo, Diclorometano, Etanol, Eter, Etilacetato, Heptano, Hexano, Isooctano, Isopropanol, Metanol, Metil-etil-cetona, N-propanol, Tolueno, Xileno).
- -Sangre de caballo o de donador humano anticoaquiada en tubos de ensayo.

6 Condiciones Ambientales:

No.	Condición ambiental	Valor mínimo	Valor máximo	Otras características
1	Temperatura en el proceso de preparación de muestras con ayuda del dilutor	para el proceso	No es crítico para el proceso	Se recomienda utilizar cámara de bioseguridad tipo I para preparación de muestras, capilla de extracción de gases para manejo de solventes o cabina de bioseguridad clase 2-B2 para ambos procesos.

7 Procedimiento:

7.1 Labores previas al análisis de calibradores, controles y muestras:

- **7.1.1** Utilice las Medidas de Seguridad y Salud Ocupacional descritas en el punto 11 de este procedimiento.
- **7.1.2** Como funcionario encargado del análisis, previo al montaje de calibradores, controles o muestras limpie la mesa de trabajo con disolución de cloro al 0,5% utilizando toallas desechables, nunca con alcohol o algún otro desinfectante que contenga sustancias volátiles. Prepare el área de trabajo con papel Kraft (la limpieza y preparación del área de trabajo puede realizarse desde el día anterior al montaje del análisis). Cierre las ventanas, celosías y la puerta del cuarto de análisis para minimizar la presencia de posibles sustancias volátiles en el ambiente.
- **7.1.3** Saque los reactivos (estándar interno, controles o calibradores) a utilizar que se conservan en refrigeración y déjelos atemperar en el cuarto de volátiles mínimo media hora antes de su utilización.
- **7.1.4** Encienda el dilutor que va a utilizar en el análisis, seleccione el método del equipo según el analito a analizar (ver anexo 02). Acondicione el dilutor (revisión de jeringas, tuberías y cebado de vías).
- **7.1.5** Verifique el suministro de gases y encienda el cromatógrafo y el automuestreador que va a utilizar en el análisis si se encontraran apagados. Seleccione el método del equipo según el analito a analizar. (ver anexo 03)
- **7.1.6** Verifique que el equipo alcanza las condiciones del método a utilizar.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 8 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

7.2 Montaje de una muestra, calibrador, control o blanco en los viales de espacio de cabeza con ayuda del dilutor:

- **7.2.1** En el caso de controles, calibradores y muestras reales líquidas, con ayuda del dilutor coloque 500uL de muestra, 450 uL estándar interno o cualquier otro reactivo que el método del dilutor indique (ver anexo 02) dentro del vial de espacio de cabeza.
- **7.2.2** En el caso de los blancos, realice el punto anterior sustituyendo la cantidad de muestra por agua desionizada.
- 7.2.3 En el caso de muestras reales sólidas (coágulo o tejido graso), con ayuda de una balanza analítica, pinzas de disección con diente de ratón, pipetas plásticas de transferencia y tijeras para disección, coloque y pese 0,500 ± 0,001 g de muestra masa equivalente al volumen de 500 uL, asumiendo una densidad de la muestra sólida de 1 g/mL) dentro del vial de espacio de cabeza (la muestra debe tomarse de la parte interna del tejido y estar picada finamente). Inmediatamente después con ayuda del dilutor coloque 450 uL estándar interno o cualquier otro reactivo que el método del dilutor indique (ver anexo 02) dentro del vial de espacio de cabeza.
- **7.2.4** Selle cada vial con un sello de aluminio con el septum de teflon/silicone.

7.3 Análisis de una curva de calibración y/o controles:

- **7.3.1** Monte en el mismo momento la curva de calibración, los controles y el análisis en serie de muestras.
- **7.3.2** La curva de calibración debe elaborarse con 5 niveles de calibración de cada sustancia volátil como mínimo y cada nivel de calibración debe analizarse por duplicado como mínimo. Los niveles de calibración utilizados deben encontrarse dentro del ámbito de trabajo declarado en el alcance de este procedimiento.
- **7.3.3** Para elaborar y verificar la curva de calibración de un analito puede utilizar niveles de calibración y controles adquiridos comercialmente con concentraciones certificadas del analito (materiales de referencia certificados) o niveles de calibración y controles preparados en el laboratorio a partir de material de referencia del analito. (ver anexo 01)
- **7.3.4** Realice la preparación y/o montaje de las réplicas de cada nivel de los calibradores y controles en el dilutor, como lo indica el anexo 01, el anexo 02 y el punto 7.2 de este procedimiento.
- **7.3.5** Programe una secuencia en el cromatógrafo de gases con el orden de los calibradores y/o controles a analizar. Salve la secuencia con la fecha del análisis y una letra para indicar el orden de las secuencias (por ejemplo, 20MARZO2015A.s)
- **7.3.6** Al programar la secuencia tome en cuenta los siguientes aspectos:
- **7.3.6.1** Cada nivel de calibrador o control debe analizarse mínimo por duplicado.
- **7.3.6.2** Las réplicas de los niveles de la curva de calibración deben montarse en series de orden ascendente de la concentración (ejemplo de análisis de una curva de 10 niveles y tres réplicas por nivel: 1-2-3-4-5-6-7-8-9-10, 1-2-3-4-5-6-7-8-9-10).
- **7.3.6.3** Inicie la secuencia con un blanco en el vial #1, luego coloque las series ascendentes de réplicas de los niveles de la curva.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 9 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

- **7.3.6.4** Coloque un blanco posterior al nivel más alto de cada serie ascendente de los niveles de la curva.
- **7.3.6.5** Coloque las réplicas de los controles en la secuencia posterior a los niveles de la curva, agrupadas por nivel de concentración y en orden ascendente de la concentración (ejemplo de análisis de controles de 3 niveles de concentración y dos réplicas por nivel: 1-1, 2-2 y 3-3).
- **7.3.7** Realice el análisis de cada nivel de los calibradores y/o controles en el cromatógrafo con el método correspondiente al analito o grupo de analitos a analizar. (ver anexo 03 y 04) Verifique que el cromatógrafo tiene las condiciones del método a utilizar y está listo, antes de iniciar la secuencia en el cromatógrafo.
- 7.3.8 Una vez finalizada la corrida cromatográfica y creada la curva de calibración dentro del método del cromatógrafo, salve el método con la curva actualizada en el directorio correspondiente de la computadora del equipo con el nombre del método y salve otra copia del método con el nombre de la fecha en que se montó la curva (por ejemplo, 20MARZO2015.m) en el directorio y subdirectorio correspondiente. (ver anexo 03)
- **7.3.9** Una vez obtenidos los datos de los niveles, introduzca los valores de área del analito y del estándar interno para crear una curva del analito volátil en la hoja de cálculo "Machote curva de calibración de otros volátiles" (ver anexo 5). Guarde el nuevo archivo de la curva con la fecha de realización, la fecha introdúzcala en el formato DDMESAAAA, dos números para el día las letras del mes y cuatro números para el año, ejemplo "curva de sevoflurano 20MARZO2016". (ver anexo 03)
- **7.3.10** Revise que la curva de calibración cumple los criterios de aceptación o rechazo establecidos en el punto 8.1.
- **7.3.11** En el caso de los controles montados junto con una curva de calibración para verificar su exactitud, calcule la concentración de estos como lo indica el punto 9.1 de este procedimiento.
- **7.3.12** Revise el promedio y la variación de las réplicas de los controles calculados en el punto anterior y verifique que los controles cumplen los criterios de aceptación o rechazo establecidos en el punto 8.2.

7.4 Procesamiento de muestras reales:

- **7.4.1** Seleccione como funcionario de la unidad de tramite rápido, utilizando la Base de datos "Manejo de solicitudes y RAS", los objetos registrados en el SADCF y pendientes de análisis que pueden formar parte de un grupo de muestras de análisis en serie de otras sustancias volátiles.
- Nota 2: La Base de datos "Manejo de solicitudes y RAS" contiene los casos y objetos registrados en el SADCF y pendientes de análisis. Dicha base de datos se alimenta con los datos de cada caso en el momento que se realiza la apertura de este o posterior al registro de un caso en el SADCF que corresponda a una toma de muestra (en los casos de pacientes muestreados por personal de la sección en el DCF). A partir de la información incluida en esta base de datos, se generan las listas de objetos a incluir en un proceso de análisis en serie de volátiles.
- Nota 3: Las muestras para análisis de sustancias volátiles se analizan en grupos de análisis en serie, que varían su número de muestras dependiendo la capacidad de viales de espacio de cabeza de los automuestreadores de los cromatógrafos. En el caso de los otros analitos volátiles la sección maneja un porcentaje muy bajo de solicitudes mensualmente, estas muestras deben

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 10 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

analizarse lo antes posible una vez ingresen al laboratorio, aún si la lista incluye un solo objeto de un caso.

- **7.4.2** Seleccione, como funcionario de la unidad de tramite rápido, utilizando la Base de datos "Manejo de solicitudes y RAS", la información para generar una lista de objetos a analizar en un proceso de análisis en serie de otras sustancias volátiles. En el caso de otros volátiles, utilice esta información de la base de datos para actualizar la hoja denominada "Insertar Lista de RAS" de la hoja de cálculo de la curva de calibración vigente creada en el punto 7.3.9 de este procedimiento y guarde el archivo de la curva con el mismo nombre asignado en el punto 7.3.9 de este procedimiento.
- **7.4.3** Entregue la lista al encargado de la bodega de indicios para que proceda a buscar las muestras y entregarlas por el SADCF al funcionario encargado del análisis.
- **7.4.4** Reciba el grupo de muestras para análisis en serie por medio del SADCF, verifique los números de objeto recibidos contra la hoja denominada "Insertar Lista de RAS" respectiva de la fecha del análisis en serie, creada en el punto 7.4.2 de este procedimiento.
- **7.4.5** Agite las muestras en un agitador de tubos por inversión aproximadamente 10 minutos antes de utilizarlas.
- **7.4.6** Rotule los viales de espacio de cabeza con el número de objeto de la muestra a analizar.
- **7.4.7** Monte las muestras en los viales de espacio de cabeza como lo indica el punto 7.2 de este procedimiento.
- **7.4.8** En el caso de los otros analitos volátiles complete con las muestras analizar la secuencia de la curva de calibración y controles, programada en el punto 7.3.5 de este procedimiento y coloque los viales de espacio de cabeza en el cromatógrafo de gases en el orden de las muestras a analizar.
- 7.4.9 Seleccione en el cromatógrafo la secuencia programada para el análisis en serie de muestras. El orden de los viales debe ser verificado por otro funcionario distinto al que montó el análisis, dicha verificación debe anotarse en el registro de análisis en serie del SADCF correspondiente a esa secuencia de muestras. La verificación idealmente debe realizarse antes de iniciar la secuencia en el cromatógrafo, pero también puede ser realizada una vez finalizado el análisis, al momento de retirar los viales del automuestreador.
- **7.4.10** Verifique que el equipo tiene las condiciones del método a utilizar y está listo, antes de iniciar la secuencia en el cromatógrafo.
- **7.4.11** Una vez finalizado el análisis de la secuencia de muestras en el cromatógrafo, retire los viales del automuestreador.
- **7.4.12** Realice los cálculos de las muestras y reporte los resultados en el SADCF como lo indican los puntos 9 y 10 de este procedimiento.
- **7.4.13** Al completar el análisis de las muestras, entregue por medio del SADCF las muestras analizadas al encargado de la bodega de indicios.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 11 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

8 Criterios de Aceptación o Rechazo de Resultados: (Referencias: 3.3 y 3.4)

8.1 Curva de calibración:

No.	Criterio de Aceptación	Valor Límite	Corrección Aplicable
1	Coeficiente de correlación "r" de la curva de calibración	Mínimo 0,995	Repetir la curva de calibración
2	CV% de las réplicas de cada nivel de calibración	<15% (En el LC <20%)	Repetir la curva de calibración
3	Diferencia entre el valor de concentración certificado o preparado de un nivel de calibración y el valor calculado con la curva de calibración		Repetir la curva de calibración

8.2 Controles

No.	Criterio de Aceptación	Valor Límite	Corrección Aplicable
1	utilizan para verificar la exactitud de la curva de	<15% (En el LC <20%) y el CV% de las réplicas de los controles <15% (En el LC <20%)	parámetros establecidos debe

8.3 Muestras

No.	Criterio de Aceptación	Valor Límite	Corrección Aplicable		
1	Identificación cualitativa de un analito	del analito y del estándar interno en ambas réplicas de	- Si el estándar interno no está presente en ambas réplicas de una muestra, el análisis de esta muestra tiene que repetirse.		

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 12 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

		retención absoluto para los analitos en la muestra no difiera en más de 2% con respecto al tiempo promedio de estos en los controles respectivos utilizados o que el valor de tiempo de retención relativo o índice de retención para los analitos en la	- Si el estándar interno solo está presente en una de las réplicas y se detecta la presencia de analito en alguna de las réplicas, debe
2	cuantificación de las	respecto al promedio	Si una muestra presenta una variación mayor a los parámetros establecidos, se debe revisar la muestra para descartar la presencia de microcoágulos (si la muestra presenta microcoágulos puede sonificarse para tratar de eliminarlos) y realizar de nuevo el montaje de la muestra. Si en el segundo montaje vuelve a obtenerse variaciones mayores a lo establecido, se debe buscar otro tubo de la misma muestra, para realizar el montaje. Si aún persisten valores mayores a lo establecido o si no se tiene más tubos de la misma muestra para repetir, debe reportarse el valor de la primera medición realizada indicando en el Dictamen Criminalístico que la muestra presentaba una variabilidad mayor a lo normal.
3	de área del estándar	interno de una muestra no debe presentar una variación mayor al 50% del valor promedio de área del	Si el valor no cumple el parámetro establecido respecto al estándar interno en una muestra, el análisis de esa muestra debe repetirse. Si vuelve a ocurrir debe reportarse la muestra como insatisfactoria.
4		La variación entre las réplicas respecto al promedio	-

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 13 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

réplicas de una muestra de coágulo	calculado 20%.	debe	ser	menor	nuevo el montaje de la muestra. Si en el segundo montaje vuelve a dar mayor a lo establecido, debe
					reportarse el valor de las mediciones indicando en el Dictamen Criminalístico que la
					muestra presentaba una variabilidad mayor a lo normal.

9 Cálculos y evaluación de la incertidumbre:

Nota 4: La cuantificación de analitos volátiles en los controles y en las muestras de origen biológico se realiza por medio de un ajuste de calibración doblemente ponderado. La estimación ponderada de los parámetros de la curva de calibración de la hoja de cálculo "Machote curva de calibración de otros volátiles" se realiza utilizando las fórmulas de mínimos cuadrados ponderados mostradas en el anexo 6 y referenciadas en 3.6 y 3.7.

9.1Cálculos de controles:

- **9.1.1** Realice los cálculos de los controles analizados junto con una curva de calibración para verificar su exactitud, de acuerdo con los siguientes pasos:
- **9.1.1.1** Una vez obtenidos los datos de las réplicas de los controles analizados, introduzca los valores de área del analito y del estándar interno de cada réplica según corresponda entre las hojas denominadas "Replica 1" a "Réplica 108" de la hoja de cálculo correspondiente.
- **9.1.1.2** Introduzca en la hoja de reporte de controles de los casos de otros volátiles ("Reporte controles") los datos de identificación de los controles analizados: tipo de control, casa comercial, número de catálogo, lote o fecha de preparación, fecha de análisis, iniciales del funcionario encargado de realizar el análisis, iniciales del funcionario encargado de realizar el cálculo.
- **9.1.1.3** Imprima o guarde en PDF u otro formato electrónico el registro del formulario "Cuantificación y reporte de controles (otros volátiles)" de la hoja "Reporte controles" en el caso de otros volátiles.

9.2Cálculos de muestras reales:

- **9.2.1** Realice los cálculos de las muestras analizadas en la hoja de cálculo de la curva de calibración de la fecha del análisis en serie, (ver anexo 03, 04 y 05) de acuerdo con los siguientes pasos:
- **9.2.1.1** Una vez obtenidos los datos de las réplicas de las muestras analizadas, introduzca los valores de área del analito y del estándar interno de cada réplica según corresponda entre las hojas denominadas "Replica 1" a "Réplica 108" de la hoja de cálculo.
- **9.2.1.2** Introduzca en la hoja de reporte de los casos de otros volatiles ("Reporte muestras"), de la hoja de cálculo respectiva los siguientes datos: tipo de muestra, tipo de tubo (respecto al color del tapón: gris, morado o rojo), número de DCF del caso, número de objeto analizado, fecha de análisis, iniciales del funcionario encargado de realizar el análisis, iniciales del funcionario encargado de realizar el cálculo.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 14 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

- **9.2.1.3** Imprima o guarde en PDF u otro formato electrónico el registro del formulario de reporte de cada caso de la hoja respectiva de la hoja de cálculo de la curva de calibración de la fecha del análisis en serie: el Formulario "Cuantificación y estimación de la incertidumbre (reporte muestras otros volátiles)" de la hoja "Reporte muestras".
- **9.2.1.4** Verifique que la variación de las réplicas de las muestras analizadas se acepta de acuerdo con los criterios expuestos en el punto 8.3 de este procedimiento, sino aplique la corrección indicada.

9.3 Evaluación de la incertidumbre:

Para la evaluación de la incertidumbre de esta metodología se siguen los lineamientos establecidos en el "Procedimiento Para la Estimación de incertidumbre de los análisis forenses" (Ver informes de cálculo de incertidumbre referenciados en 3.8 y 3.9).

La hoja de cálculo "Machote curva de calibración de otros volátiles" realizan la estimación de las incertidumbres expandidas de la forma numérica y la forma tradicional de la GUM.

En la cuantificación de los otros analitos volátiles las incertidumbres expandidas obtenidas por la hoja de cálculo corresponden al intervalo con k=2 p=0.9545 normal.

10 Reporte de Análisis y Resultados:

- **10.1** Para el reporte de los resultados, tome en cuenta los criterios generales para la identificación y reporte de sustancias indicados en el PON Manejo General de Casos en la Sección de Toxicología Forense.
- **10.2** En los casos con resultados positivos o no se detectó, reporte como tal los resultados en el SADCF y en el Dictamen Criminalístico tomando en cuenta los siguientes aspectos.
- **10.3** En las muestras líquidas reporte los resultados de las concentraciones detectadas de los diferentes analitos volátiles de forma cuantitativa en g/L. En el caso de muestras sólidas (como coágulo y tejido graso), reporte los resultados en forma cualitativa.
- 10.4 Reporte los resultados cualitativos como positivos para un analito volátil si la concentración calculada es mayor al límite de detección estimado. Reporte los resultados cuantitativos como positivos para un analito volátil si la concentración calculada es mayor al límite de cuantificación estimado.
- **10.5** Reporte los resultados cuantitativos y su incertidumbre asociada como lo indica el apartado "Reporte de resultados del PON Manejo General de Casos en la Sección de Toxicología Forense.
- **10.6** Si una muestra cuantificada da como resultado un valor mayor al LCS del método, reporte el valor como mayor al LCS.

11 Medidas de Seguridad y Salud Ocupacional:

 Las muestras deben manipularse con todos los cuidados que requieren las muestras de origen biológico. Utilice siempre gabacha, anteojos de seguridad y guantes desechables al manipular las muestras.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 15 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

- Los tubos con muestras deben transportarse dentro del laboratorio en las gradillas destinadas para este uso.
- Siempre que salga del área de laboratorios, deseche los guantes, lávese las manos y deje la gabacha en la entrada de este.
- No abra ningún recipiente con disolventes volátiles fuera de la capilla de extracción de gases.
- Si ocurre un derrame de algún reactivo refiérase al Manual de Seguridad y Salud Ocupacional del Departamento de Ciencias Forenses.
- Informe cualquier accidente donde se presuma contacto con material bio-infeccioso al Jefe de Sección o quién este encargado del laboratorio en ese momento para que se le indique el procedimiento a seguir.
- Si ocurre contacto de algún reactivo con los ojos, acuda inmediatamente a la ducha para ojos que se encuentra en el laboratorio.
- Si ocurre algún derrame importante de disolventes o ácido en la ropa o la piel utilice la ducha que se encuentra en el laboratorio.

12 Simbología:

CV%: Coeficiente de variación porcentual

DCF: Departamento de Ciencias Forenses

DMSO: Dimetilsulfoxido

HS/GC/FID/FID : Cromatografía de gases con espacio de cabeza (head-space) y doble columna y doble detector de ionización de llama

g: Gramos

GC: Cromatografía de gases g/kg: Gramos por kilogramo

g/L: Gramos por litro

GUM: Guía para la Expresión de la Incertidumbre de Medida

L: Litro

LC: Límite de cuantificación

LCS: Límite de cuantificación superior

mL: Mililitro mm: Milímetro N/A: No aplica

O.I.J: Organismo de Investigación Judicial

OQ/PV: Calificación Operacional/Verificación de Rendimiento

PDF: Formato de Documento Portable

PON: Procedimiento de Operación Normado

Ph. Eur.: Farmacopea Europea

RAS: Registro de análisis en serie

P-DCF-GCG-JEF-001-R3, Versión 01

Emitido y Aprobado por Unidad de Gestión de Calidad

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 16 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

SADCF: Sistema Automatizado del Departamento de Ciencias Forenses

SCD: Solicitud de cambio documental SGC: Sistema de Gestión de Calidad

TA: Temperatura Ambiente

TLF: Técnico Laboratorista Forense UGC: Unidad de Gestión de Calidad

uL: Microlitro

USP: Farmacopea de Estados Unidos de América

13 Terminología:

N/A

14 Anexos

No. de Anexo	Nombre del Anexo
1	Preparación de reactivos y ejemplos de preparación de disoluciones calibrador y control de analitos volátiles
2	Condiciones de los métodos del dilutor según analito
3	Distribución de métodos cromatográficos, hojas de cálculo, base de datos y archivos según analitos, uso, equipos, ubicaciones en computadora de equipo y servidores.
4	Condiciones de los métodos cromatográficos según analito y cromatógrafo
5	Ejemplos de hojas que componen la hoja de cálculo: "Machote curva de calibración de otros volátiles"
6	Fórmulas de regresión y ponderación utilizadas en las hojas de cálculo "Machote curva de calibración de etanol y congéneres" y "Machote curva de calibración de otros volátiles"

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 17 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

PREPARACIÓN DE REACTIVOS Y EJEMPLOS DE PREPARACIÓN DE DISOLUCIONES CALIBRADOR Y CONTROL DE ANALITOS VOLÁTILES

Preparación de la disolución de cloro al 0,5%:

- 1. Verifique en la etiqueta de la disolución de cloro concentrada que se adquiere comercialmente la concentración de esta.
- 2. Determine el volumen que necesita de la disolución de cloro concentrada para preparar el volumen requerido de la disolución de cloro al 0,5%, utilizando la siguiente formula:

(Cd) x (Vd) = (Cc) x (V) despejando se obtiene: (V) = (Cd) x (Vd) / (Cc)

donde:

(CD): Concentración deseada, 0,5%.

(Vd): Volumen requerido de la disolución de la concentración deseada a preparar.

(Cc): Concentración conocida de la disolución de cloro concentrada que se adquiere comercialmente

(V)= Volumen en mililitros de la disolución de cloro concentrada que se adquiere comercialmente de concentración conocida.

- 3. Utilizando una probeta adecuada al volumen a medir, adicione el volumen de la disolución de cloro concentrada adquirida comercialmente(V) al recipiente que va a contener la disolución de cloro al 0,5% (ejemplo: el recipiente puede ser una pizeta de 500mL, Vd= 500 mL).
- 4. Utilizando una probeta adecuada al volumen a medir, adicione el volumen de agua desionizada necesario para completar el volumen de la disolución de cloro al 0,5% deseado.
- 5. Agite suavemente por inversión manual. Identifique el recipiente que va a contener la disolución preparada como "Disolución de cloro al 0,5%" y rotule con la fecha de preparación e iniciales de quién la prepara.
- 6. Almacene a temperatura ambiente. Esta disolución es estable al menos por 1 mes.

Ejemplo: en el siguiente cuadro se presentan ejemplos de algunos volúmenes y concentraciones utilizadas en la preparación de una disolución de cloro al 0,5%:

Concentra- ción deseada	Volumen de la disolución de la concentración deseada	Concentración conocida de la disolución de cloro concen- trada	centrada, se ad-	Volumen necesario agregar de agua destilada para completar el volumen de la disolución de cloro deseada
(Cd: %)	(Vd: mL)	(Cc: %)	(V: mL)	(mL)
0,5	500	12	21	479
0,5	1000	12	42	958
0,5	500	10	25	475
0,5	1000	10	50	950

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 18 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

Preparación de la disolución de cloro para desinfección de aproximadamente 0,5% a 1%:

- 1. Verifique en la etiqueta de la disolución de cloro concentrada que se adquiere comercialmente la concentración de esta.
- 2. Determine el volumen que necesita de la disolución de cloro concentrada para preparar el volumen requerido de la disolución de cloro para lavado de aproximadamente 0,5% a 1%, utilizando la siguiente formula:

$$(Cd) \times (Vd) = (Cc) \times (V)$$

despejando se obtiene: $(V) = (Cd) \times (Vd) / (Cc)$

donde:

(CD): Concentración deseada, aproximadamente 0,5% a 1%.

(Vd): Volumen requerido de la disolución de la concentración deseada a preparar.

(Cc): Concentración conocida de la disolución de cloro concentrada que se adquiere comercialmente

(V): Volumen en mililitros de la disolución de cloro concentrada que se adquiere comercialmente de concentración conocida.

- 3. Utilizando una probeta adecuada al volumen a medir, adicione el volumen de la disolución de cloro concentrada adquirida comercialmente(V) al recipiente que va a contener la disolución de cloro para desinfección de aproximadamente 0,5% a 1% (ejemplo: el recipiente puede ser una tina plástica para lavado de 30 L de volumen aproximado, Vd= 30000mL).
- 4. Adicione agua de grifo hasta aproximadamente la mitad del volumen del recipiente utilizado para contener la disolución de cloro para desinfección de aproximadamente 0,5% a 1% deseado. En el caso del recipiente plástico para desechos líquidos del dilutor de 1 L o similar adicione agua hasta un cuarto del volumen del recipiente.
- 5. Prepare esta disolución inmediatamente antes de usar y descártela después de ser utilizada.

Ejemplo: en el siguiente cuadro se presentan ejemplos de algunos volúmenes y concentraciones utilizadas en la preparación de una disolución de cloro para desinfección de aproximadamente 0,5% a 1%:

Concentración deseada aproxi- mada	Volumen de la disolu- ción de la concentra- ción deseada	Concentración conocida de la disolución de cloro concentrada	Volumen de la disolución de cloro concentrada, se adquiere comercialmente
(Cd: %)	(Vd: mL)	(Cc: %)	(V: mL)
0,5	20000	12	750
0,5	30000	12	1250
0,5	20000	10	1000
0,5	30000	10	1500
0,5	2500	12	100
0,5	2500	10	125
0,5	1000	12	42
0,5	1000	10	50

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 19 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

Preparación de la disolución de estándar interno para otros analitos volátiles, 1,4-dioxano 1,03 g/L:

- Adicione 1 mL de 1,4-dioxano, con ayuda de un equipo volumétrico adecuado al volumen a medir (por ejemplo una pipeta de vidrio de 1mL o 2 mL o un dilutor), a un balón aforado de 1000 mL y afore con agua desionizada.
- 2. Trasvase la disolución a botellas plásticas de 125 mL, 250 mL y/o 500 mL. Tápelas, identifique la disolución y rotule.
- 3. Almacene en refrigeración (0 a 10°C) hasta su uso. Esta disolución es estable al menos por 1 año.

Preparación de disoluciones de un analito volátil o mezclas de analitos volátiles a partir de material de referencia líquido y de pureza conocida

1.Utilice la siguiente fórmula para calcular los volúmenes necesarios, de un analito o de los diferentes analitos de una mezcla, para preparar una disolución.

$$C_f = \frac{d \times (p/100) \times V_i \times 1000}{V_f}$$

Donde:

Cf = Concentración final del analito volátil en g/L en la disolución

d = Densidad del material de referencia del analito volátil en kg/L

p = Porcentaje de pureza del material de referencia

Vi = Volumen agregado del material de referencia del analito volátil

Vf = Volumen final de la disolución

- 2. Agregue el disolvente requerido para el analito o grupo de analitos (por ejemplo DMSO), a un balón aforado con capacidad igual al volumen (Vf) requerido de la disolución madre (por ejemplo: 10 mL, 25 mL, 50 mL, 100 mL u otro), agregue como mínimo la mitad de la capacidad del balón.
- 3. Utilizando un equipo volumétrico adecuado al volumen a medir, agregue el volumen necesario del material de referencia (*Vi*) del analito o grupo de analitos al balón aforado.
- 4. Afore con el disolvente requerido para el analito o grupo de analitos.
- 5.Si la disolución preparada es una disolución madre que se utilizara en la preparación de otras disoluciones, no se almacena, se prepara en el momento que se van a utilizar y el sobrante se descarta.
- 6.En el caso que la disolución preparada sea un nivel de una curva de calibración, no se almacena, se prepara en el momento que se va a utilizar y el sobrante se descarta.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 20 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

Preparación de disoluciones de un analito volátil o mezclas de analitos volátiles (intermedias, de trabajo, niveles de curva de calibración o niveles de control) a partir de una disolución inicial preparada y de concentración conocida

1.Utilice la siguiente fórmula para calcular los volúmenes necesarios de una disolución inicial de un analito o mezcla de analitos de concentración conocida, para preparar una disolución final de concentración y volumen determinada.

$$C_f = \frac{C_i \times V_i}{V_f}$$

Donde:

 C_f = Concentración final del analito volátil en g/L en la disolución preparada

 V_f = Volumen final de la disolución preparada del analito volátil

Ci = Concentración del analito volátil en g/L en la disolución inicial

V_i = Volumen agregado de la disolución inicial del material de referencia del analito volátil

- 2. Agregue el disolvente requerido para el analito o grupo de analitos (por ejemplo DMSO), a un balón aforado con capacidad igual al volumen (Vf) requerido de la disolución madre (por ejemplo: 10 mL, 25 mL, 50 mL, 100 mL u otro), agregue como mínimo la mitad de la capacidad del balón.
- 3. Utilizando un equipo volumétrico adecuado al volumen a medir, agregue el volumen necesario del material de referencia (V_i) del analito o grupo de analitos al balón aforado.
- 4. Afore con el disolvente requerido para el analito o grupo de analitos.
- 5.En el caso que la disolución preparada sea una disolución intermedia o de trabajo, normalmente no se almacena, prepare en el momento que se va a utilizar y el sobrante se descarta.
- 6.En el caso que la disolución preparada sea un nivel de una curva o un nivel de control de otro analito volátil (ver ejemplo al final de este anexo):
 - Utilice para el cálculo del volumen requerido (V_i) de la disolución inicial del analito un volumen final de 0,500 mL.
 - Prepare la disolución directamente en los viales de espacio de cabeza, agregando además de los volúmenes de DMSO correspondientes a la preparación de la disolución del analito, el volumen de estándar interno y de sangre requerido para el método (0,500 mL). Selle cada vial con el sello de aluminio con el septum de teflón/silicón, después de preparado. Estas disoluciones deben prepararse justo antes del montaje en el cromatógrafo de gases, una vez usadas se descartan.
 - Si las disoluciones preparadas son niveles de una curva de calibración, utilice un orden aleatorio de preparación (no en forma ascendente o descendente), por ejemplo, para una curva de 7 niveles utilice el siguiente orden 1, 7, 4, 2, 6, 3 y 5.
 - En el caso que la disolución preparada sea un nivel de una curva de calibración, no se almacena, se prepara en el momento que se va a utilizar y el sobrante se descarta.

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 21 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

Ejemplo de preparación de disolución madre, disolución intermedia y disolución de trabajo y disoluciones de los niveles de la curva de sevoflurano a partir de un estándar de referencia Ph. Eur. y con DMSO como disolvente:

Preparación de la disolución madre de sevoflurano a partir de un estándar de referencia Ph. Eur., con DMSO como disolvente:		
Densidad del estándar de referencia (g/mL):	1,52	
Porcentaje de pureza del estándar de referencia:	100	
Volumen agregado de estándar de referencia (mL)*:	0,050	
Volumen del balón aforado (mL)	10	
Concentración de disolución madre de sevoflurano (g/L):	7,6	

Preparación de la disolución intermedia de sevoflurano a madre, con DMSO como disolvente:	a partir de una disolución
Concentración de disolución madre de sevoflurano (g/L):	7,6
Volumen agregado de estándar de referencia (mL):	2
Volumen del balón aforado (mL)	10
Concentración de disolución intermedia de sevoflurado (g/L):	1,52

Preparación de la disolución de trabajo de sevoflurano a intermedia, con DMSO como disolvente:	a partir de una disolución
Concentración de disolución intermedia de sevoflurano (g/L):	1,52
Volumen agregado de estándar de referencia(mL):	2
Volumen del balón aforado (mL)	10
Concentración de disolución de trabajo de sevoflurano(g/L):	0,304

Prepa trabaj	Preparación de los niveles de la curva de sevoflurano a partir de la disolución de trabajo, con DMSO como disolvente:								
Nivel de curva*	Método del dilutor a utilizar para preparar el nivel	Volumen a agregar de disolución de trabajo (mL)	Volumen a agregar de DMSO (mL)	Volumen a agregar de sangre (mL)	Volumen a agregar de estándar interno (mL)	Concentración del nivel (g/L)			
1	SEVO-1 52	0,025	0,475	0,500	0,500	0,0152			
2	SEVO-3 04	0,050	0,450	0,500	0,500	0,0304			
3	SEVO-6 08	0,100	0,400	0,500	0,500	0,0608			
4	SEVO-9 12	0,150	0,350	0,500	0,500	0,0912			
5	SEVO-12 16	0,200	0,300	0,500	0,500	0,1216			
6	SEVO-20 06	0,330	0,170	0,500	0,500	0,2006			
7	SEVO-30 40	0,500	0,000	0,500	0,500	0,3040			

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 22 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

Condiciones de los métodos del dilutor según analito

Método del dilutor Hamilton Microlab utilizado en el montaje de muestras para el análisis de anestésicos y los otros análitos volátiles (tolueno, xileno, etc): "ANEST-VOLT"

			eringa izqu					a derecha			Tipo de sustancia
	Auto	Ret	Vol	IZQ_	Vel		Vol	DERE	Vel		o destino
1	S		Lle	450	2					Y	Estándar interno
2	S		Asp	50	2					, ,	Aire
3							Asp	500	2		Agua
4			Sur	500	2		Sur	500	2		Desecho
5	S		Lle	500	2						Estándar interno
6			Sur	500	2						Desecho
7	S		Lle	500	2						Estándar interno
8	S		Sur	500	2						Desecho
9	S		Lle	500	2						Estándar interno
10			Sur	500	2						Vial espacio de cabeza
11	S		Asp	100	2		1				Aire
12							Asp	500	2		DMSO
13			Sur	50	2		Sur	500	2		Vial espacio de cabeza
14	S		Asp	50	2						aire
15						J	Asp	500	2		Sangre o agua
16			Sur	50	2		Sur	500	2		Vial espacio de cabeza
17	S		Lle	450	2						Estándar interno
18			Sur	500	2						Desecho
19	S		Lle	500	2						Estándar interno
20	S		Sur	500	2						Desecho

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 23 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

Distribución de métodos cromatográficos, hojas de cálculo, base de datos y archivos según analitos, uso, equipos, ubicaciones en computadora de equipo y servidores.

Nombre del método	Tipo de analito	Uso	Equipo	Ubicación en computadora del equipo
ANESTESICOS	Anestésicos	Análisis de muestras, controles y calibradores	GC7890	C:\CDSProjects\ANESTESICOS\MET- HODS
VOLATIL	Otras sustancias vo- látiles	Análisis de muestras, controles y calibradores	GC7890	C:\CDSProjects\VOLATILES\METHODS
DESCANSO	General	Método de reposo del equipo	GC7890	C:\CDSProjects\ETANOL\METHODS
LIMPIEZA	General	Método de limpieza del equipo	GC7890	C:\CDSProjects\ETANOL\METHODS

Tipo de archivo	Equipo	Ubicación en computadora del equipo
secuencia	GC7890	C:\CDSProjects\ANESTESICOS ó VOLATILES\SEQUENCES
datos	GC7890	C:\CDSProjects\ANESTESICOS ó VOLATILES\RESULTS
métodos en uso	GC7890	C:\CDSProjects\ANESTESICOS ó VOLATILES\METHODS
Respaldo de métodos de eta- nol y congéneres	GC7890	C:\CDSProjects\ANESTESICOS ó VOLATILES\METHODS\Anes- tésicos o Volátiles\Año

Tipo de archivo	Uso	Ubicación en servidor de toxicología
Hoja de cálculo "Machote curva de calibración de otros volátiles", versión actualizada	Sirve de machote para generar curvas de calibración en uso de otros volátiles, guardada con la fecha de calibración	H:\reporte\Volátiles
Archivos de la curva de otros vo- látiles, guardadas por fecha de calibración y vigente	Generar cálculos de controles y muestras de las secuencias de análisis	H:\reporte\Volátiles\(analito)
Gráficos de control en uso	Revisión de tendencias y aceptación de controles	H:\reporte\Volátiles\(analito)
Archivo de la base de datos "Ma- nejo de solicitudes y RAS" (ver- sión actualizada)	, , ,	H:\reporte\ Base datos manejo de solicitud y RASES MSR\

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 24 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

Condiciones de los métodos cromatográficos según analito y cromatógrafo

Acquisition Method Report

OpenLAB

Method Information

Last Saved As: C:\CDSProjects\ETANOL\Methods\DESCANSO.amx

Modified: 2019-08-13 14:07:17-06:00

Modifier: ORGOMA

CONTROLADA 2019-08-13 13:50:50-06:00 Created:

Creator: ORGOMA

Description:

Version: 2019-0813-2007-17892

GC

Module Display Name: Agilent 8890

Module Type: GC Order: 1

GC Summary

Run Time: 3 min Post Run Time: 0 min

Oven

Equilibration Time: 0 min

Max Temperature: 260 °C

Maximum Temperature

Override:

isabled

Slow Fan:

Temperature

Setpoint: On (Initial): 40 °C Hold Time: 3 min Post Run: 40 °C

Acquisition Method.rdl Printed: 2020-07-22 11:15:09-06:00

Shading used to group data for a given entry

Page 1 of 7

Emitido y Aprobado por Unidad de Gestión de Calidad

DEPARTAMENTO DE CIENCIAS FORENSES VERSIÓN 01 PAGINA: 25 de 54 DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GCFID/FID

MIROLADA

Acquisition Method Report

OpenLAB

Front SS Inlet He

Mode: Split
Heater: On 150 °C
Pressure: On 7 psi

 Total Flow:
 On 7.1719 mL/min

 Septum Purge Flow:
 On 3 mL/min

Pre-Run Flow Test: Off

Gas Saver: On 20 After 2 min mL/min

Split Ratio: 2:1

Split Flow: 2.7813 mL/min

Liner: A Liner has not been selected.

Column

Column Outlet Pressure: 0 psi

Column #1

Column Information: J&W 123-9134: 2500.64531

DB-ALC1:

Temperature Range: -60 °C -260 °C (260 °C)
Dimensions: 30 m x 320 μm x 4.8 μm

In: Front SS Inlet He

Out: Front Detector FID

(Initial): 40 °C Pressure: 7 psi

Flow: 1,8906 mL/min
Average Velocity: 24.701 cm/sec
Holdup Time: 2.0242 min

Control Mode: Constant Flow

Flow

Setpoint: On

(Initial): 1.3906 mL/min
Post Run: 0.0056693 mL/min

Acquisition Method.rdl

Printed: 2020-07-22 11:15:09-06:00

Page 2 of 7

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 26 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

OpenLAB

Column #2

Column Information: J&W 123-9234: 2500.64588

DB-ALC2:

Temperature Range: -60 °C-260 °C (260 °C) Dimensions: 30 m x 320 μm x 1.2 μm In: Front SS Inlet He Out:

(Initial): Pressure:

OPIA NO Flow: Average Velocity: Holdup Time: Control Mode:

Pressure

Setpoint: (Initial): Post Run:

Acquisition Method.rdl

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 27 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

OpenLAB

Front Detector FID

Makeup: He

Heater: On 125 °C

H2 Flow: Off Air Flow: Off Makeup Flow: Off

Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame: Blank Evaluation Setpoints:

Perform Blank Evaluation

Test:

Initial Baseline Minimum:

d.5 min Initial Baseline Maximum: Initial Baseline Noise:

Final Baseline Minimum: Final Baseline Maximum: Final Baseline Noise:

Maximum Peak Height: Time Window Start:

Total Peak Area:

Time Window End:

Acquisition Method.rdl

Printed: 2020-07-22 11:15:09-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 28 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

OpenLAB

Back Detector FID

Makeup: He

Heater: On 125 °C

H2 Flow: Off Air Flow: Off Makeup Flow: Off

CONTROLADA Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame: Off

Blank Evaluation Setpoints: Perform Blank Evaluation

Off

Initial Baseline Minimum: 2 pA Initial Baseline Maximum: 20 pA Initial Baseline Noise: 0.3 pA Final Baseline Minimum: 2 pA Final Baseline Maximum: 40 pA Final Baseline Noise: 0.6 pA 100 pA*sec Total Peak Area:

Maximum Peak Height: 3 рА Time Window Start: 0 min

Time Window End: 0.533333333 min

Detector Evaluation

Perform Detector Evaluation Off

Test:

Signal Selected:

No Signal Selected

Checkout Sample:

NONE

Signals

Signal #1: Front Signal

Description: Front Signal Details: Front Signal (FID)

Save: On Data Rate: 20 Hz

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 29 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

NO CONTROLADA

Acquisition Method Report

OpenLAB

Signal #2: Back Signal

Description:

Back Signal

Details:

Back Signal (FID)

Save: Data Rate: On

20 Hz

Signal #3:

Description:

None

Signal #4:

Description:

None

Signal #5:

Description:

None

Signal #6:

Description:

None

Signal #7:

Description:

None

Signal #8:

Description:

Agilent 7697A

Module Display Name:

Module Type:

Headspace Sampler

Order:

1

Temperature Settings:

Oven Temperature:

OFF °C

Loop Temperature:

OFF °C

Transfer Line Temperature: OFF °C

Timing Settings:

Vial Equilibration:

15.00 min

Injection Duration:

0.15 min

GC Cycle Time:

4.00 min

Acquisition Method.rdl

Printed: 2020-07-22 11:15:09-06:00

Page 6 of 7

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 30 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

MIROLADA

Acquisition Method Report

OpenLAB

Vial and Loop Settings:

Vial Size: Vial Shaking: OFF Fill Mode: Pressure Fill Pressure: 15 psi Fill Time: 0.2 Loop Fill Mode: Custom Loop Ramp Rate: 20 psi/min Loop Final Pressure: 10 psi Loop Equilibration Time: 0.05

Carrier Settings:

Carrier Control Mode: GC controls Carrier

Advanced Settings:

Extraction Mode: Single Extraction

Vent After Extraction: OFF

Post Injection Purge: Default, 100 mL/min for 1 min

Acceptable Leak Check: Default, 0.2mL/min

Sequence Actions:

Vial Missing:: Skip

Wrong Vial Size: Continue

Leak Detected: Continue

System Not Ready: Continue

Method Properties

Instrument Technique: Gas Chromatography

Schema version

Schema version: 2.3

Audit Trail

Audit trail not printed

Acquisition Method.rdl

Printed: 2020-07-22 11:15:09-06:00

Page 7 of 7

DEPARTAMENTO DE CIENCIAS FORENSES VERSIÓN 01 PAGINA: 31 de 54 DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS P-DCF-ECT-TOX-042 SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-FID/FID

Acquisition Method Report

OpenLAB

Method Information

Last Saved As: C:\CDSProjects\ETANOL\Methods\LIMPIEZA.amx

Modified: 2020-01-08 14:57:55-06:00

Modifier: MME

WO COMILIS OF THE STATE OF THE 2020-01-08 14:57:55-06:00 Created:

MME Creator:

Description:

2020-0108-2057-55431 Version:

Method Properties

Instrument Technique: Gas Chromatography

Schema version

Schema version: 2.3

GC

Agilent 8890 Module Display Name:

GC Module Type: Order:

GC Summary

Run Time: Post Run Time:

Oven

0 min Equilibration Time: 260 °C Max Temperature: Maximum Temperature Disabled

Override:

Slow Fan: Disabled

Temperature

Setpoint: On 150 °C (Initial): Hold Time: 1.5 min Post Run: 150 °C

Acquisition Method.rdl

Printed: 2020-07-22 11:16:40-06:00

Page 1 of 7

DEPARTAMENTO DE CIENCIAS FORENSES VERSIÓN 01 PAGINA: 32 de 54 DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GCFID/FID

MIROLADA

Acquisition Method Report

OpenLAB

Front SS Inlet He

 Mode:
 Split

 Heater:
 On 250 °C

 Pressure:
 On 8.1 psi

 Total Flow:
 On 403.9 mL/min

 Septum Purge Flow:
 On 3 mL/min

 Pre-Run Flow Test:
 Off

 Gas Saver:
 Off

 Split Ratio:
 400 :1

 Split Flow:
 399.9 mL/min

Liner: A Liner has not been selected.

Column

Column Outlet Pressure: 0 psi

Column #1

Column Information: J&W 123-9134: 2500.64531

DB-ALC1:

Temperature Range: -60 °C -260 °C (260 °C)

Dimensions: 30 m x 320 μm x 1.8 μm

In: Front SS Inlet He

Out: Front Detector FID

(Initial): 150 c Pressure: 8.1 psi

Flow: 0,99975 mL/min
Average Velocity: 23.218 cm/sec
Holdup Time: 2.1535 min
Control Mode: Constant Flow

Flow

Setpoint: On

(Initial): 0.99975 mL/min
Post Run: 0.99975 mL/min

Acquisition Method.rdl

Printed: 2020-07-22 11:16:40-06:00

Page 2 of 7

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 33 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

OpenLAB

Column #2

Column Information: J&W 123-9234: 2500.64588

DB-ALC2:

Temperature Range: -60 °C-260 °C (260 °C) Dimensions: 30 m x 320 μm x 1.2 μm

Front SS Inlet He ln: Out:

COPIA NO CONTROLADA (Initial): Pressure: Flow: Average Velocity: Holdup Time: Control Mode:

Pressure

Setpoint: (Initial): Post Run:

Acquisition Method.rdl

Printed: 2020-07-22 11:16:40-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 34 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

OpenLAB

Front Detector FID

Makeup: He

Heater: On 300 °C H2 Flow: On 40 mL/min Air Flow: On 400 mL/min Makeup Flow: On 25 mL/min

Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame: Blank Evaluation Setpoints:

Perform Blank Evaluation

Test:

on Recolution of the Contract Initial Baseline Minimum: Initial Baseline Maximum: Initial Baseline Noise: Final Baseline Minimum: Final Baseline Maximum: Final Baseline Noise: Total Peak Area:

Maximum Peak Height: Time Window Start:

Time Window End:

Acquisition Method.rdl Printed: 2020-07-22 11:16:40-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 35 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

OpenLAB

Back Detector FID

Makeup: He

Heater: On 300 °C H2 Flow: On 40 mL/min Air Flow: On 400 mL/min Makeup Flow: On 25 mL/min

CONTROLADA Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

On Flame: Blank Evaluation Setpoints: Perform Blank Evaluation

Test:

Off

Initial Baseline Minimum: 2 pA Initial Baseline Maximum: 20 pA Initial Baseline Noise: 0.3 pA Final Baseline Minimum: 2 pA Final Baseline Maximum: 40 pA Final Baseline Noise: 0.6 pA Total Peak Area: 100 pA*sec Maximum Peak Height: 3 рА Time Window Start: 0 min

0.5333333333 min Time Window End:

Detector Evaluation

Perform Detector Evaluation Off

Signal Selected:

No Signal Selected

Checkout Sample:

NONE

Signals

Signal #1: Front Signal

Description: Front Signal Details: Front Signal (FID)

On Save: Data Rate: 20 Hz

Acquisition Method.rdl

Printed: 2020-07-22 11:16:40-06:00

Page 5 of 7

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 36 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

NO CONTROLADA

Acquisition Method Report

OpenLAB

Signal #2: Back Signal

Description: Back Signal
Details: Back Signal (FID)

Save: On Data Rate: 20 Hz

Signal #3:

Description: None

Signal #4:

Description: None

Signal #5:

Description: None

Signal #6:

Description: None

Signal #7:

Description: None

Signal #8:

Description: None

Agilent 7697A

Module Display Name: 769

Module Type: Headspace Sampler

Order: 1

Temperature Settings:

Oven Temperature: 125 $^{\circ}$ C Loop Temperature: 140 $^{\circ}$ C Transfer Line Temperature: 150 $^{\circ}$ C

Timing Settings:

Vial Equilibration: 7.00 min Injection Duration: 0.15 min GC Cycle Time: 2.50 min

Acquisition Method.rdl

Printed: 2020-07-22 11:16:40-06:00

Page 6 of 7

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 37 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

MIROLADA

Acquisition Method Report

OpenLAB

Vial and Loop Settings:

Vial Size: Vial Shaking: OFF Fill Mode: Pressure Fill Pressure: 15 psi Fill Time: 0.2 Custom Loop Fill Mode: Loop Ramp Rate: 20 psi/min Loop Final Pressure: 10 psi Loop Equilibration Time: 0.05

Carrier Settings:

Carrier Control Mode: GC controls Carrier

Advanced Settings:

Extraction Mode: Single Extraction

Vent After Extraction: OFF

Post Injection Purge: Default, 100 mL/min for 1 min

Acceptable Leak Check: Default, 0.2mL/min

Sequence Actions:

Vial Missing:: Skip
Wrong Vial Size: Continue
Leak Detected: Continue
System Not Ready: Continue

Audit Trail

Audit trail not printed

Acquisition Method.rdl

Printed: 2020-07-22 11:16:40-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 38 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

OpenLAB

Method Information

Last Saved As: C:\CDSProjects\VOLATILES\Methods\VOLATIL.amx

Modified: 2020-07-22 11:42:44-06:00

Modifier: SLS

A NO CONTROLLADA Created: 2020-07-22 11:42:44-06:00

Creator: SLS

Description:

Version: 2020-0722-1742-44393

Method Properties

Instrument Technique: Gas Chromatography

Schema version

Schema version: 2.3

GC

Agilent 7890A Module Display Name:

GC Module Type: Order:

GC Summary

Run Time: Post Run Time:

Oven

Equilibration Time: 0.5 min Max Temperature: 260 °C Maximum Temperature Disabled

Override:

Slow Fan: Disabled

Acquisition Method.rdl

Printed: 2020-07-22 11:42:44-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 39 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

OpenLAB

Temperature

Setpoint: On 60°C (Initial): Hold Time: 5 min 60 °C Post Run:

Program

Program	1				
Row ID	Rate (°C/min)		Value (°C)	Hold Time (min)	
1	10		130	0	
Front	SS Inlet He				
Mode:		Split			
Heater:		On :	250 °C)
Pressur	e:	On	12.214 psi	2	/
Total Fl	ow:	On !	55.5 mL/min		
Septum	Purge Flow:	On :	3 mL/min		
Gas Sav	er:	Off			
Split Ra	tio:	20:1			
Split Flo	w:	50 ml	L/min		

Front SS Inlet He

Liner: A Liner has not been selected.

Column

Column Outlet Pressure:

Column #1

J&W 123-9134: 2500.64531 Column Information:

DB-ALC1:

Temperature Range -60 °C-260 °C (260 °C) Dimensions: 30 m x 320 μm x 1.8 μm

In: Front SS Inlet He Front Detector FID Out:

60°C (Initial): Pressure: 12.214 psi 2.5 mL/min Flow: Average Velocity: 40.664 cm/sec 1.2296 min Holdup Time: Control Mode: Constant Flow

Acquisition Method.rdl

Printed: 2020-07-22 11:42:44-06:00

Page 2 of 6

DEPARTAMENTO DE CIENCIAS FORENSES VERSIÓN 01 PAGINA: 40 de 54 DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS P-DCF-ECT-TOX-042 SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-FID/FID

Acquisition Method Report

OpenLAB

Flow

Setpoint: On

(Initial): 2.5 mL/min 0.0056693 mL/min Post Run:

Column #2

Column Information: J&W 123-9234: 2500.64588

DB-ALC2:

CONTROLADA -60 °C-260 °C (260 °C) Temperature Range: Dimensions: 30 m x 320 μm x 1.2 μm In: Front SS Inlet He Out: Back Detector FID

60 °C (Initial): 12.214 psi Pressure: 2.5381 mL/min Flow: Average Velocity: 40.973 cm/sec Holdup Time: 1.2203 min Control Mode: Constant Pressure

Pressure

Setpoint: 12.214 psi (Initial): 0.035291 psi Post Run:

Front Detector FID

Makeup:

On 300 °C Heater: H2 Flow: On 40 mL/min Air Flow: On 400 mL/min Makeup Flow: On 25 mL/min

Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame: On

Acquisition Method.rdl

Printed: 2020-07-22 11:42:44-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 41 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

OpenLAB

Back Detector FID

Makeup: He

Heater: On 300 °C H2 Flow: On 40 mL/min Air Flow: On 400 mL/min Makeup Flow: On 25 mL/min

MIROLADA Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame: On

PCM C

PCM C He

Pressure

Setpoint: On (Initial): 60 psi Post Run: 0 psi

Aux PCM C He

Excluded from Affecting GC's Readiness State

Pressure

Setpoint: (Initial): Post Run:

Signals

Signal #1: Front Signal

Description: Front Signal Details: Front Signal (FID)

Save: On Data Rate: 20 Hz

Acquisition Method.rdl Printed: 2020-07-22 11:42:44-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 42 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

CONTROLADA

Acquisition Method Report

OpenLAB

Signal #2: Back Signal

Description: Back Signal
Details: Back Signal (FID)

Save: On Data Rate: 20 Hz

Signal #3: Test Plot

Description: Test Plot
Save: Off
Data Rate: 50 Hz

Signal #4: Test Plot

Description: Test Plot
Save: Off
Data Rate: 50 Hz

Agilent 7697A

Module Display Name: 7697A

Module Type: Headspace Sampler

Order: 1

Temperature Settings:

Oven Temperature: 70 °

Loop Temperature: 80°

Transfer Line Temperature: 90 %

Timing Settings:

Vial Equilibration: 10.00 min Injection Duration: 0.15 min GC Cycle Time: 13.00 min

Acquisition Method.rdl

Printed: 2020-07-22 11:42:44-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 43 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

OpenLAB

Vial and Loop Settings:

Vial Size: OFF Vial Shaking: Fill Mode: Pressure Fill Pressure: 15 psi Fill Time: 0.2 Loop Fill Mode: Custom Loop Ramp Rate: 20 psi/min Loop Final Pressure: 10 psi Loop Equilibration Time: 0.05

Carrier Settings:

Carrier Control Mode: GC controls Carrier

Advanced Settings:

Extraction Mode: Single Extraction

Vent After Extraction:

MIROLADA Default, 100 mL/min for 1 min Post Injection Purge:

Acceptable Leak Check: Default, 0.2mL/min,

Sequence Actions:

Vial Missing:: Wrong Vial Size:

Leak Detected:

Continue System Not Ready:

Audit Trail

Audit trail not printed

Acquisition Method.rdl

Printed: 2020-07-22 11:42:44-06:00

Page 6 of 6

DEPARTAMENTO DE CIENCIAS FORENSES VERSIÓN 01 PAGINA: 44 de 54 DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS P-DCF-ECT-TOX-042 SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-FID/FID

Acquisition Method Report

OpenLAB

Method Information

Last Saved As: C:\CDSProjects\ANESTESICOS\Methods\ANESTESICOS.amx

Modified: 2020-01-31 14:49:07-06:00

Modifier: MME

SOUND POLICION OF THE PROPERTY Created: 2020-01-27 15:45:57-06:00

MME Creator:

Description:

2020-0131-2049-07185 Version:

GC

Module Display Name: Agilent 7890A

Module Type: GC Order:

GC Summary

Run Time: 13 min Post Run Time: 2 min

Oven

Equilibration Time: 2 min 260°C Max Temperature:

Maximum Temperature Override:

Slow Fan: Disabled

Temperature

Setpoint: On (Initial): 60°C Hold Time: 7 min Post Run: 60°C

Program

Row ID	Rate (°C/min)	Value (°C)	Hold Time (min)
1	14	130	1

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 45 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

MIROLADA

Acquisition Method Report

OpenLAB

Front SS Inlet He

Mode: Split

Heater: On 250 °C
Pressure: On 12.214 psi
Total Flow: On 55.5 mL/min
Septum Purge Flow: On 3 mL/min

 Gas Saver:
 Off

 Split Ratio:
 20:1

 Split Flow:
 50 mL/min

Liner: A Liner has not been selected.

Column

Column Outlet Pressure: 0 psi

Column #1

Column Information: J&W 123-9134: 2500.64531

DB-ALC1:

Temperature Range: -60 °C—260 °C (260 °C)

Dimensions: 30 m x 320 μm x 1.8 μm

In: Front SS Inlet He

Out: Front Detector FID

(Initial): 60 °C

 Pressure:
 12.214 ps

 Flow:
 2.5 mL/min

 Average Velocity:
 40.664 cm/sec

Holdup Time: 1.2296 min
Control Mode: Constant Flow

Flow

Setpoint: On

(Initial): 2.5 mL/min
Post Run: 2.5 mL/min

Acquisition Method.rdl

Printed: 2020-07-22 11:32:03-06:00

Page 2 of 6

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 46 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

OpenLAB

Column #2

Column Information: J&W 123-9234: 2500.64588

DB-ALC2:

Temperature Range: -60 °C-260 °C (260 °C) Dimensions: 30 m x 320 μm x 1.2 μm COMIROLADA In: Front SS Inlet He Out: Back Detector FID

(Initial): 60 °C Pressure: 12.214 psi Flow: 2.5381 mL/min 40.973 cm/sec Average Velocity: 1.2203 min Holdup Time: Control Mode: Constant Pressure

Pressure

Setpoint: On (Initial): 12.214 psi 0.035291 psi Post Run:

Front Detector FID

Makeup: He

Heater: On 300°C H2 Flow: 40 mL/min Air Flow: 400 mL/min Makeup Flow: 25 mL/min

Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame:

Back Detector FID

Makeup: He

On 300 °C Heater: H2 Flow: On 40 mL/min Air Flow: On 400 mL/min Makeup Flow: On 25 mL/min

Carrier Gas Flow Correction: Constant Makeup and Fuel Flow

Flame:

Acquisition Method.rdl

Printed: 2020-07-22 11:32:03-06:00

Page 3 of 6

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 47 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

OpenLAB

PCM C

PCM C He

Pressure

Setpoint: On (Initial): 60 psi Post Run: 0 psi

Aux PCM C He

CONTROLADA ***Excluded from Affecting GC's Readiness State***

Pressure

Setpoint: Off (Initial): 10 psi Post Run: 0 psi

Signals

Signal #1: Front Signal

Description: Front Signal

Details: Front Signal (FID)

Save:

Data Rate: 20 Hz

Signal #2: Back Signal

Description: Back Signal

Details: Back Signal (FID)

Save: On 20 Hz Data Rate:

Signal #3:

Description: None

Signal #4:

Description: None

Acquisition Method.rdl

Printed: 2020-07-22 11:32:03-06:00

Page 4 of 6

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 48 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042	
FID/FID		

CONTROLADA

Acquisition Method Report

OpenLAB

Agilent 7697A

Module Display Name: 7697A

Module Type: Headspace Sampler

Order: 1

Temperature Settings:

Oven Temperature: 70 $^{\circ}$ C Loop Temperature: 80 $^{\circ}$ C Transfer Line Temperature: 90 $^{\circ}$ C

Timing Settings:

Vial Equilibration: 10.00 min Injection Duration: 0.15 min GC Cycle Time: 18.00 min

Vial and Loop Settings:

Vial Size: 20
Vial Shaking: OFF
Fill Mode: Pressure
Fill Pressure: 15 psi
Fill Time: 0.2
Loop Fill Mode: Default

Carrier Settings:

Carrier Control Mode: GC controls Carrier

Advanced Settings:

Extraction Mode: Single Extraction

Vent After Extraction: OFF

Post Injection Purge: Default, 100 mL/min for 1 min

Acceptable Leak Check: Default, 0.2mL/min

Sequence Actions:

Vial Missing:: Skip
Wrong Vial Size: Continue
Leak Detected: Continue
System Not Ready: Continue

Acquisition Method.rdl

Printed: 2020-07-22 11:32:03-06:00

Page 5 of 6

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 49 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

OpenLAB

Method Properties

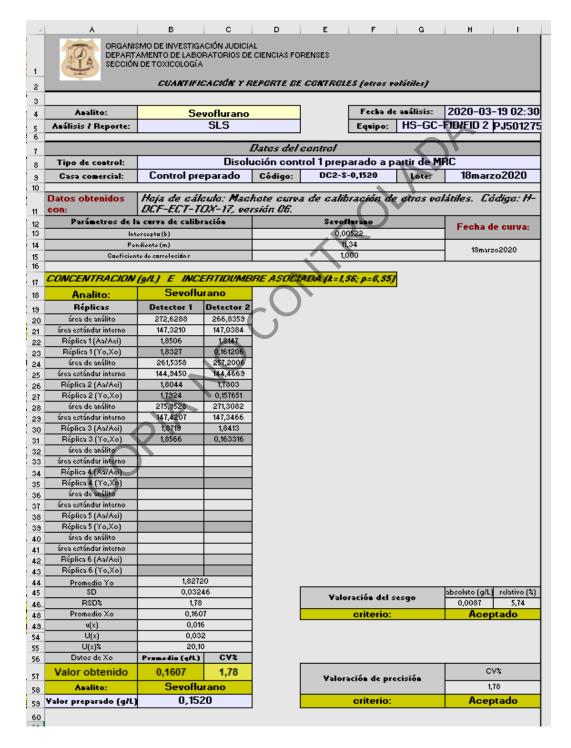
Instrument Technique: Gas Chromatography

Schema version

COPIANO Schema version: 2.3

Audit Trail

Audit trail not printed


Acquisition Method.rdl

Printed: 2020-07-22 11:32:03-06:00

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 50 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

ANEXO NÚMERO 5

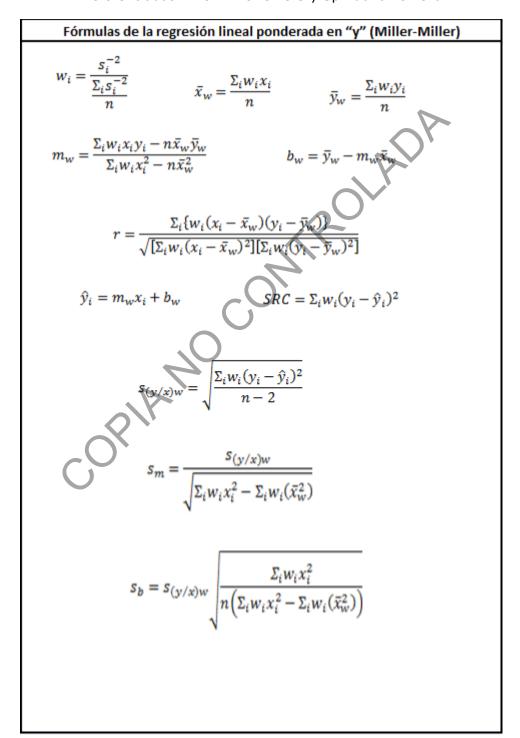
Ejemplos de hojas que componen la hoja de cálculo: "Machote curva de calibración de otros volátiles"

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 51 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID	P-DCF-	ECT-TOX-042

	Datos de Los controles								
N.*		Tipo	de control:		Casa	Codigo interno	Lote		
1,1	Disolución conti	rol 1 preparado a par	tir de MRC		ontrol prepara	DC1-T-0,0030	18marzo		
1	Disolución conti	rol 1 preparado a par	tir de MRC		ontrol prepara	DC1-T-0,0030	18marzo		
2	Disolución cont	rol 2 preparado a pa	rtir de MRC		ontrol prepara	DC2-T-0,0136	18marzo		
3	Disolución conti	rol 3 preparado a pa	rtir de MRC		ontrol prepara	DC3-T-0,030	18marzo		
4	Disolución conti	rol 1 preparado a par	tir de MRC		ontrol preparac	DC1-S-0,0486	18marzo		
5		rol 1 preparado a par			ontrol prepara	DC2-S-0,1520	18marzo		
6	Disolución conti	rol 1 preparado a par	tir de MRC		ontrol preparad	DC3-S-0,3040	18marzo:		
	M*de réplicas:	41	42	43	P				
N.*	Sevoflurano				N.*				
1,1				10	2				
1,2					3				
1,3					•				
1,4					5				
1,5				- 63	6				
			5	Datos de áreas de analitos	9 y estándar interno				
				N.º de répli	a				
1	Analito	41 NSD	NSD NSD	43 NSD	NSD	NSD	NSD		
2	0	NSD NSD	NSD	NSD	NSD NSD	NSD	NSD NSD		
4	0	NSD 👞	NSD	NSD	NSD	NSD	NSD		
5	0	NSD	NSD	NSD	NSD	NSD	NSD		
6	0	NSD	NSD	NSD	NSD	NSD	NSD		
7	sevoflurano 1	272,6288	261,5358	275,9528	NSD	NSD	NSD		
8 9	sevoflurano 2 0	266,8359 NSD	257,2006 NSD	271,3082 NSD	NSD NSD	NSD NSD	NSD NSD		
10	0	NSD	NSD	NSD	NSD NSD	NSD	NSD NSD		
11	0	NSD	NSD	NSD	NSD	NSD	NSD		
12	0	NSD	NSD	NSD	NSD	NSD	NSD		
13	0	NSD	NSD	NSD	NSD	NSD	NSD		
14 15	0	NSD NSD	NSD NSD	NSD NSD	NSD NSD	NSD NSD	NSD NSD		
	0 1-4 Dioxano 1	147,321	144,945	147,4207	#N/D	#N/D	#N/D		
	1-4 Dioxano 2	147,0384	144,4669	147,3466	#N/D	#N/D	#N/D		
16 17	0	NSD	NSD	NSD	NSD	NSD	NSD		
16 17 18		NSD	NSD	NSD	NSD	NSD	NSD		
16 17	0	FALSO	FALSO	FALSO	VERDADERO	VERDADERO	VERDAD		

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 52 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-	ECT-TOX-042

FID/FID


	A	В	CHBVA	DE CAL	E	F N (HS-GC-	G EID/EID 7	Η	I	J	K	Fecha:	M	N	0
			CORVA	DE CAL	IBRACIO	и (по-ос-	רוטורוט ו	090)				reciia.			
	Tipo de está	ndar de la curva:					Niveles	preparad	os a partir	de un MR	C del analito	olátil e			
_	Datos de los niveles	s preparados		I	Variab	le independien	te (a/L)				Variat	le dependiente			7
	Código: interno	Lote	Nivel	n(x;)	× _i	U(x;)	u(x;)	u(x _I)%	n(yı)	y _l	s(yı)	CV%(y ₁)	u(y _i)	u(y ₁)%	u(xi)%/u(yi
	DN1-S-0,01520	18marzo2020	1	1	0,01520	0,00070	0,000352	2,32	3	0,17779	0,0013544	0,76	0,000782	0,44	5,27
	DN2-S-0,0304	18marzo2020	2	1											
	DN3-S-0,0608	18marzo2020	3	1	0.0608	0.0021	0.001028	1.69	3	0.69108	0.0330501	4.78	0.01908	2.76	0.61
	DN4-S-0,0912	18marzo2020	4	1	0,0912	0,0031	0,001542	1,69	3	1,04671	0,0560483	5,35	0,03236	3.09	0,55
	DN5-S-0,1216	18marzo2020	5	1	0,1216	0.0040	0,002002	1,65	3	1,33045	0,0785647	5,91	0,045359	3,41	0,48
	DN6-S-0,2006	18marzo2020	6	1	0.2006	0.0066	0.0033	1.65	3	2,26021	0.1170977	5.18	0.06761	2.99	0.55
	DN7-S-0,3040	18marzo2020	7	1	0,3040	0,0092	0,0046	1,52	3	3,48183	0,0393783	1,13	0,02274	0,65	2,33
			8	1											
			9	1											
			10	1											
						K=2; 95%									
					, ,										_
		Datos del a					Dat Parámetro	os del ajuste	val			Selectione tip	po de ponderación	entre y o x,y	
		Parámetro	-	alor	-								х,у		
		m _o		1,34			Intercepto (b) 0,00522						· · ·	_	
		s(m ₀)		,09				11,3361		Variabilidad total del método					
				2326			Coeficiente de correlación (r) Desviación del intercepto s(s)		0,99986			-	IS sesgo%):	9,7	_
		s(b _o)			0,0024 0.02006				0,003) '		d efectivos (Vefec):	47	
		Promedio Xw	0,0	2006	J	Desviacio	n de la pendier	endiente s _(m) 0,09		0,09 Datos totales utilizados: MRC (RMS CV%):		194			
									<					3,08	
									$/ \times$				d efectivos (Vefec):	47	_
												Datos total	les utilizados:	194	

		CURVA	DE CALIB	RACIÓN	(HS-GC-	FID/FID 7	890)			
		00.00	. 22 3/12.0		(,			
Nivel	1	2	3	4	5	6	7	8	9	10
Repeticiones	3	0	3	3	3	3	3	0	0	0
Concentración g/L (X)	0,01520		0,06080	0,09120	0,12160	0,20060	0,30400			
	26,494		99,456	149,366	190,675	320,639	527,763			
	25,895		97,150	146,093	186,521	313,867	516,040			
	26,662		109,520	157,563	207,213	334,014	498,062			
	25,947		106,926	154,105	202,742	326,947	487,360			
	27,024		106,092	163,689	206,099	364,544	544,097			
Área de analito (Aa)	26,141		103,784	160,205	201,962	357,294	532,647			
Area de arialilo (Aa)										
Q										
	147,750		151,134	148,638	152,336	146,726	150,933			
	146,056		149,518	146,980	151,882	146,165	149,192			
	149,854		151,947	151,871	150,461	149,443	143,192			
	148,615		149,852	150,104	148,470	147,891	142,974			
	149,228		150,169	146,165	148,158	151,620	153,563			
	148,083		148,721	145,991	147,510	150,218	152,055			
Área de estándar interno (Aei)	140,003		140,721	140,001	147,510	130,210	132,033			

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 53 de 54
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC- FID/FID		ECT-TOX-042

ANEXO NÚMERO 6

Fórmulas de regresión y ponderación utilizadas en las hojas de cálculo "Machote curva de calibración de etanol y congéneres" y "Machote curva de calibración de otros volátiles", referenciadas Miller-Miller en 3.5 y Spiridonov en 3.6

DEPARTAMENTO DE CIENCIAS FORENSES	VERSIÓN 01	PAGINA: 54 de 54	
DETERMINACIÓN CUALITATIVA Y CUANTITATIVA DE OTRAS SUSTANCIAS VOLÁTILES EN MATRICES BIOLÓGICAS POR HS-GC-	P-DCF-ECT-TOX-042		
FID/FID			

Fórmulas de la regresión lineal ponderada en "x;y" (Spiridonov) $u_{yi} = \frac{s_{yi}}{\sqrt{n_i}} \Rightarrow u_{yi}^2 = \frac{s_{yi}^2}{n}$ $w_i = \frac{1}{u_{vi}^2 + m^2 u_{vi}^2} / \Sigma_i \left(\frac{1}{u_{vi}^2 + m^2 u_{vi}^2} \right) \Longrightarrow ponderación en "x; y"$ donde $\Rightarrow m = primer \, estimado \, de \, la \, pendiente$ $w_i = \frac{1}{u_{vi}^2} / \Sigma_i \frac{1}{u_{vi}^2} \Longrightarrow ponderación en$ $\bar{x}_{w} = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \Rightarrow \bar{x}_{w} = \sum_{i} w_{i} x_{i}$ $\bar{y}_{w} = \frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}} \Rightarrow \bar{y}_{w} = \sum_{i} w_{i} y_{i}$ $\Sigma_i w_i = \mathbf{1}$ $= \frac{\sum_{i} \{w_{i}(x_{i} - \bar{x}_{w})(y_{i} - \bar{y}_{w})\}}{\sqrt{[\sum_{i} w_{i}(x_{i} - \bar{x}_{w})^{2}][\sum_{i} w_{i}(y_{i} - \bar{y}_{w})^{2}]}}$ $SRC = \Sigma_i w_i (y_i - \hat{y}_i)^2$ $s_{(y/x)w} = \int \frac{\sum_{i} w_{i} (y_{i} - \hat{y}_{i})^{2}}{n - 2}$ $s_{m} = \frac{s_{(y/x)w}}{\sqrt{\Sigma_{i}w_{i}(x_{i} - \bar{x}_{w})^{2}}} \qquad s_{b} = s_{(y/x)w} \sqrt{\frac{1}{\Sigma_{i}w_{i}} + \frac{\bar{x}_{w}^{2}}{\Sigma_{i}w_{i}(x_{i} - \bar{x}_{...})^{2}}}$